
J. Stat. Appl. Pro. 1, No. 2, 147-155 (2012)                                                                                                               147 

 
 
 
 

 
Reduced Bias Estimation of the Reinsurance Premium of Loss 

Distribution 
 
Rassoul Abdelaziz 
 
GEE laboratory, National High School of Hydraulic, Blida, Algeria 

Email Address: a.rassoul@ensh.dz  
 
Received Dec. 6, 2011, Revised May 14, 2012, Accepted June 4, 2012 

 

Abstract: In this paper we propose a new asymptotically normal estimator of the reinsurance premium for the 

losses distribution. Our estimator is based on the reduced bias of the extreme quantile and the index of an 

heavy-tailed distribution. Moreover, we illustrate the behaviour of the proposed estimator and give a 

comparison between this estimator and the classical semi parametric estimator proposed by Necir et al. (2007) 

in terms of the bias and the root mean squared error (rmse). 
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1 Introduction 

 
In insurance, the worst scenarios are those caused by extreme events such as natural disasters, financial 

crashes, industrial catastrophes. These extreme events increase the bill of insurance and reinsurance 

companies. A typical requirement for actuaries is the determination of the optimal or adequate premium for 
such risks, according to an appropriate principal pricing. In insurance literature, many premium calculation 

principles are proposed such as: mean, value at risk, variance, etc. In our study, we consider the Wang 

premium calculation principle (1996) based on a proportional transformation of the hazard function. The 
proportional hazard (denoted PH) premium of an insured risk X with continuous distribution function F, 

depends on the hazard function S=1-F and a parameter r≥1 called risk aversion index. In some actuarial 

problems, as in the reinsurance treaty, one is interested in the estimation of a premium for a given retention 

level R>0, we note by 𝛱𝑟 ,𝑅 to a reinsurance premium of the high layer [R,∞). This kind of problem can be 

found whenever the insured represent a dangerous level of risk for the insurance company, and decides to 

give a part of this loss to another reinsurance company, because it may not have sufficient capital to cover 
the entire risk. 

    The PH premium is defined as function of r and S by: 

𝛱𝑟 =   𝑆 𝑥  
1/𝑟

∞

0

𝑑𝑥 

For R>0 being the reinsurance retention level of a risk X, the corresponding PH premium of loss with a 
high layer is defined as: 

𝛱𝑟 ,𝑅 =   𝑆 𝑥  
1/𝑟

∞

𝑅

𝑑𝑥                                                                  (1) 

Now, consider  𝑋1, 𝑋2, … . 𝑋𝑛  are iid random variables with common distribution function F of an insured 

risk X. We assume that F has regular variation function near infinity with index -1/γ, that is: 
𝑆 𝑡𝑥 

𝑆 𝑡 
= 𝑥−1/𝛾𝑓𝑜𝑟𝑎𝑛𝑦𝑥 > 0 𝑎𝑛𝑑

1

2
< 𝛾 < 1.                                     (2) 

(see, e.g., de Haan and Ferreria, (2006), page 19). Such cdf's constitute a major subclass of the family of 

heavy-tailed distributions. It includes distributions such as Pareto, Burr, Student, α-stable (0<α<2), and 

log-gamma, which are known to be appropriate models of fitting large insuranceclaims, largefluctuations 
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of prices, log-returns, etc. (see, e.g. Reiss and Thomas, (2007); Beirlant et al. (2001); Rolski et al. (1999)). 

Let 

 

𝑄 𝑠 = 𝑖𝑛𝑓 𝑥 ∈ 𝑅: 𝐹 𝑥 ≥ 𝑠 , 0 < 𝑠 < 1, 
 

denote the quantile function associated to the df F and 𝑈 𝑡 = 𝑄 1 − 1 𝑡   is the tail quantile of the df F. 

Note that the condition (2) is equivalent to the condition 

𝑙𝑖𝑚
𝑡→∞

𝑈 𝑡𝑥 

𝑈 𝑡 
= 𝑥𝛾  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 > 0.                                                                (3) 

Further, we assume that F is second order regularly varying at infinity, that is, there exist a function A with 

constant sign near infinity, such that 𝐴 𝑠 → 0 𝑎𝑠 𝑠 ↓ 0, and the following refinement of (3) satisfying 

𝑙𝑖𝑚
𝑡→∞

1

𝐴 𝑡 
 
𝑈 𝑡𝑥 

𝑈 𝑡 
− 𝑥𝛾  = 𝑥𝛾

𝑥𝜌 − 1

𝑥
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0.                                         (4) 

The constant 𝛾 is called the first order parameter and 𝜌 ≤ 0 is the second order parameter of the df F. 

    In this paper, we are interesting with the construction of a bias-reduced asymptotically normal estimator 
of the reinsurance premium Πr,R given by formula (1) for a heavy tailed distribution. 

    Let 𝑋𝑛 :1 ≤ 𝑋𝑛 :2 ≤ ⋯ ≤ 𝑋𝑛 :𝑛  the order statistics of  𝑋1, 𝑋2, … . 𝑋𝑛 . The estimation of high quantiles in the 

case of heavy-tailed distributions has got a great deal of interest, see for instance Weissman (1978), 

Dekkers and de Haan (1989), Matthys and Beirlant (2003) and Gomes et al. (2005). 

    For small values of s, we want to estimate 𝜒 1−𝑠 , such as 𝐹 𝜒{1−𝑠} = 1 − 𝑠, we shall work in Hall's 

class (Hall 1982), where it exists for 𝛾 > 0, 𝛽 ≠ 0and 𝜌 ≤ 0, such that 

𝑈 𝑡 = 𝐶𝑡𝛾 1 + 𝐴 𝑡 𝜌 + 𝑜 𝑡𝜌                                                                       (5) 

This class contains most of the heavy-tailed models important in applications, like the Fréchet, the 

Generalized Pareto, and the Student's-t. We are going to base inference on the largest k order statistics 

(o.s.), and as usual in semi-parametric estimation of parameters of extreme events, we shall assume that k 
is an intermediate sequence of integers in [1,n[, i.e., 

𝑘 → ∞𝑎𝑛𝑑 𝑘 𝑛 → 0 𝑎𝑠𝑛 → ∞, 
then, from (5), there is 

𝜒 1−𝑠 = 𝑈 1 𝑠  ~𝐶𝑠−𝛾 , 𝑎𝑠𝑠 → ∞. 

An obvious estimator of  𝜒 1−𝑠 is 𝐶 𝑠−𝛾 , with 𝐶  and 𝛾  any consistent estimators of C and γ, respectively. 

Consequently, an obvious estimator of C, proposed by Hall (1982), is 

𝐶 = 𝑋𝑛−𝑘 :𝑛 𝑘 𝑛  𝛾 , 
and 

𝑄 𝑛 𝑠 = 𝑋𝑛:𝑛−𝑘 𝑘 𝑛  𝛾 𝑠−𝛾 , 0 < 𝑠 <
𝑘

𝑛
, 

is the obvious quantile estimator at the level s (Weissman 1978). Then, an estimator of the hazard function 

is given by: 

𝑆  𝑥 =  𝑘 𝑛   𝑋𝑛 :𝑛−𝑘 1/𝛾 𝑥−1/𝛾 , 𝑎𝑠𝑥 → ∞.                                                   (8) 

By replacing (8) in (1) and at an optimal retention level 𝑅 = 𝑅𝑜𝑝𝑡 ≔ 𝐹−1 1 − 𝑘 𝑛  , we obtain a semi 

parametric asymptotic normal estimator for 𝛱𝑟 ,𝑅 for a fixed risk aversion index 𝑟 ≥ 1with the condition 

𝑘 → ∞, 𝑘 𝑛 → 0 𝑎𝑛𝑑  𝑘𝐴 𝑛/𝑘 → 0 𝑎𝑠 𝑛 → ∞,  given by : 

𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
=  𝑘 𝑛  1/𝑟

𝑟𝛾 𝑛
1 − 𝑟𝛾 𝑛

𝑋𝑛:𝑛−𝑘 ,                                                               (9) 

where 𝑅 𝑜𝑝𝑡 = 𝑋𝑛:𝑛−𝑘  and 𝛾 𝑛  is the classical Hill's estimator (Hill, 1975) of the tail index 𝛾, defined by: 

𝛾 𝑛 =
1

𝑘
 𝑙𝑜𝑔 𝑋𝑛:𝑛−𝑖+1 

𝑘

𝑖=1

− 𝑙𝑜𝑔 𝑋𝑛 :𝑛−𝑘+1 .                                                 (10) 

The asymptotic Normality of 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
 it is studied by Necir et al. (2007). 

 Hill's estimator 𝛾 𝑛  plays a pivotal role in statistical inference on distribution tails. This estimator 

has been thoroughly studied, improved and even generalized to any real parameter 𝛾. Weak consistency of 
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𝛾 𝑛  was established by Mason, (1982) assuming only that the underlying cdf F satisfies condition (3). The 

asymptotic normality of 𝛾 𝑛  has been established (see de Haan and Peng, (1998)) under the condition (5) 

where the function A is defined as 𝐴 𝑡 = 𝛾𝛽𝑡𝜌 , for an adequate k as: 

𝛾 𝑛 = 𝛾 +
𝛾

 𝑘
𝑍𝑘 +

𝐴 𝑛/𝑘 

 1 − 𝜌 
 1 + 𝑜𝑝 1  . 

with 𝑍𝑘  is asymptotically standard normal r.v's. 

  Both estimators proposed in (9) and (10) are built under the strong assumptions  𝑘𝐴 𝑛/𝑘 → 0 𝑎𝑠 𝑛 →
∞ and present significant bias for moderate k with low stability areas around respectively 𝛱𝑟 ,𝑅and 𝛾. 

    Peng (1998) initiated the concept of bias reduction by constructing a new estimator of γ based on the 

Hall's second order model, and followed by many works as Beirlant et al. (1999), Feuerverger and Hall 
(1999), Gomes et al. (2000). 

    In this paper, we use the bias-reduced estimator of the high quantile, proposed by Gomes et. al. to 

propose a new estimator for premium 𝛱𝑟 ,𝑅 and we establish its asymptotic normality.   

    The paper is organized as follows. In Section 2, we introduce a reduced bias theory and construct the 

new semi parametric estimator for 𝛱𝑟 ,𝑅  and present our main result. Section 3 is devoted to simulated 

results and to compare these results with the estimator of Necir et al. (2007). The proof of the main result is 

postponed until section 4. 

 

2 Reduced bias estimator and reinsurance premium 
 

2.1 Reduced-bias estimation of γ 
 
 The reduced bias estimator of the tail index γ is proposed by Caeiro et al. (2005) and given by : 

𝐻  𝑘 = 𝛾 𝑛  1 −
𝛽 𝑘  𝑛/𝑘 𝜌 𝑘 

1 − 𝜌
 .                                                (11) 

 

where 𝛾 𝑛  is the Hill estimator of  𝛾  given by (10). Caeiro et al. (2005) state that if the secondorder 

condition in (4) holds, and for𝑘 → ∞, 𝑘 𝑛 → 0 𝑎𝑛𝑑   𝑘𝐴 𝑛/𝑘 → 𝝀  𝑎𝑠 𝑛 → ∞, finite and non necessarily 

null, then 

 𝑘 𝐻 𝜌 ,𝛽  𝑘 − 𝛾 =𝑑 𝛾𝑍𝑘 + 𝑂𝑝   𝑘𝐴 𝑛/𝑘  .                                      (12) 

where 𝑍𝑘  is an asymptotic standard normal r.v's. 
 

2.2 Estimators of the shape second order parameter ρ 
 
The expression of 𝐻  𝑘  requires the knowledge (or the estimation) of the second order parameters 𝜌 and 

𝛽, we can state here the works of Fraga Alves (2003) for the class of the shape second order parameter 

estimator. We define the statistics functions of the j-moment of the log-excesses 

𝑀𝑛
 𝑗  𝑘 =

1

𝑘
   𝑙𝑜𝑔 𝑋𝑛 :𝑛−𝑖+1 − 𝑙𝑜𝑔 𝑋𝑛 :𝑛−𝑘+1  

𝑗
𝑘

𝑖=1

, 𝑗 = 1,2, …. 

and a tuning parameter τ in R as : 

𝑇𝑛
𝜏  𝑘 =

 𝑀𝑛
 1  𝑘  

𝜏

−  𝑀𝑛
 1  𝑘 /2 

𝜏/2

 𝑀𝑛
 1  𝑘 /2 

𝜏/2
−  𝑀𝑛

 1  𝑘 /6 
𝜏/3

 

for all τ in R. These statistics converge towards the value
3 1−𝜌 

 3−𝜌 
. 

 The expression of the shape second order parameter estimator is: 
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𝜌 𝑛
 𝜏  𝑘 = −  

3 𝑇𝑛
𝜏 𝑘 − 1 

𝑇𝑛
𝜏 𝑘 − 3

 .                                                         (13) 

 

 
2.3Estimators of the scale second order parameter β 

 

 Gomes and Martins (2002) proposed a functional estimator of the second order scale parameter 

depending with the expression of 𝜌 and k taking the form: 

 

𝛽 𝜌  𝑘 =  
𝑘

𝑛
 

𝜌 𝑣𝑛
 1−𝜌   𝑘 𝑁𝑛

 1  𝑘 − 𝑁𝑛
 1−𝜌   𝑘 

𝑣𝑛
 1−𝜌  

 𝑘 𝑁𝑛
 1−𝜌  

 𝑘 − 𝑁𝑛
 1−2𝜌  

 𝑘 
,                                    (14) 

Where 

𝑣𝑛
 𝛼  𝑘 =

1

𝑘
  

𝑖

𝑘
 

𝛼−1

.

𝑘

𝑖=1

 

And 

𝑁𝑛
 𝛼  𝑘 =

1

𝑘
 𝑖  𝑙𝑜𝑔 𝑋𝑛:𝑛−𝑖+1 − 𝑙𝑜𝑔 𝑋𝑛:𝑛−𝑖   

𝑖

𝑘
 

𝛼−1

.

𝑘

𝑖=1

 

Fraga Alves (2003) and Gomes (2007) have respectively shown the consistency of the estimators in (13) 

and (14) at an appropriate value of the intermediate integer sequence 𝑘1 =  𝑛1−𝜀   for 𝜀 > 0. 
 

3New estimator of reinsurance premium 
 
 Let us define the quantile function for heavy tailed distribution satisfaying the first order condition 

in (3) as: 𝑄 1 − 𝑠 = 𝐶𝑠−𝛾 , with the hazard function given by : 𝑆 𝑥 = 𝐶1/𝛾𝑥−1/𝛾 .  In the literature, 
several works were dedicated to the estimation of quantile function Q, as Weissman (1978), Caeiro (2006) 

and Caeiro et al. (2008), based on the estimation of the parameter C and the reduction of its bias. In this 

section, we propose an appropriate estimator of the parameter C, based on the bias reduction technics : 

𝐶 
𝐻  𝑘 =

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝐻 − 1
.  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽    

𝑘

𝑛
 

𝐻 

, 

Where  

ϐ𝜃 𝐻, 𝜌, 𝛽 =
𝜃− 𝛾+𝜌 − 1

𝜃−𝛾 − 1

𝛾𝛽 𝑛/𝑘 𝜌

𝜌
,                                                                                (15) 

With 𝐴  𝑡 = 𝐻 𝛽 𝑡𝜌 , and 0 < 𝜃 < 1. 
We can now conclude the reduced bias semi-parametric estimator of the high quantile, as follow: 

𝑄 𝐻  𝑠, 𝑘 =
𝑋𝑛 :𝑛− 𝑘/2 −𝑋𝑛 :𝑛−𝑘

2𝐻 −1
.  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽    

𝑘

𝑛
 

𝐻 

𝑠−𝐻 , 

 

Then, the relative hazard function S(x) is equivalent to : 

𝑆 
𝐻  𝑠, 𝑘 =  

𝑘

𝑛
  

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝐻 − 1
.  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽    

𝐻 

𝑠−1/𝐻 .                                          (16) 

In order to estimate the PH-premium of loss, we must give the semi parametric estimation of the optimal 

reinsurance retentionlevel 𝑅𝑜𝑝𝑡 , which is obtained by definition as 

𝑅 𝑜𝑝𝑡 =
𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛:𝑛−𝑘

2𝐻 − 1
.  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽   ,                                                          (17) 

Finally, by replacing thehazard function (16) in the expression (1), we obtain the new estimator of the PH- 

premium of loss distribution, as follow: 
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𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
=  

𝑘

𝑛
 

1/𝑟

 
𝑟𝐻 

1 − 𝑟𝐻 
  

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝐻 − 1
  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽   , 

The asymptotic normality of our estimator is given in the following theorem. 

 

Theorem (1): We assume that the distribution function F satisfies the second order condition (4), with the 

integer k, such that: 𝑘 → ∞, 𝑘 𝑛 → 0 𝑎𝑛𝑑   𝑘𝐴 𝑛/𝑘 → 𝝀  𝑎𝑠 𝑛 → ∞, where 𝝀 finite and non necessarily 

null. Then, for 1 > 𝑟 ≥ 1/𝝀, we have as 𝑛 → ∞: 

 𝑘
 𝑘/𝑛 −1/𝑟

𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘
 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡

− 𝛱𝑟 ,𝑅 →𝑑 𝑁 0, 𝜎2 𝛾, 𝑟, 𝜌  , 

where 

𝜎2 𝛾, 𝑟, 𝜌 =  
𝛾

2𝛾 − 1
  

𝑟𝛾

1 − 𝑟𝛾
  1 −

𝛾2𝛾  2𝜌 − 1 

 2𝛾 − 1  2𝜌+𝛾 − 1 
+

𝑟𝛾

1 − 𝑟𝛾
−

𝛾2𝛾 𝑙𝑛2

 2𝛾 − 1 
 . 

 

4. Finite sample behavior - Simulation study 
 
 We use the R statistical software (Ihaka and Gentleman, 1996) to apply the above result to the 

most usual distribution of Hall class, namely, the Generalized Pareto's model:  

𝐹 𝑥 = 1 −  1 + 𝛾𝑥 −1/𝛾 , 0.5 < 𝛾 < 1, 𝐶 = 1, 𝜌 = −𝛾 𝑎𝑛𝑑 𝛽 = 1, 𝑓𝑜𝑟 𝑥 > 0, 
and the Fréchet model : 

𝐹 𝑥 = 𝑒𝑥𝑝 −𝑥−1/𝛾 , 0.5 < 𝛾 < 1, 𝐶 = 1, 𝜌 = −1 𝑎𝑛𝑑 𝛽 = 1/2, 𝑓𝑜𝑟 𝑥 > 0. 
In the first part, by using the results of theorem (1), we fix 𝜁 ∈  0,1  and 𝑞𝜁/2} is the  1 − 𝜁/2 -quantile of 

the standard normal distribution N(0,1). The  1 − 𝜁 -confidence bounds of 𝛱𝑟 ,𝑅𝑜𝑝𝑡
 is given by: 

𝛱𝑟 ,𝑅 = 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
±

𝜎 𝛾, 𝑟, 𝜌 

 𝑘
𝑞𝜁/2 𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘  𝑘/𝑛 1/𝑟 . 

The simulation results are presented in the following Tables, and the values of the optimal fraction integer 

𝑘𝑜𝑝𝑡  is such that𝑘𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑅𝑀𝑆𝐸  𝛱𝑟 ,𝑅𝑜𝑝𝑡
; 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡

𝑖    for 2000 sample replications. 

 

Table 1.   IC(95%) for𝛱 Fréchet Pattern’s with𝛾 = 0.65, 𝑟 = 1.1.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 234 1.7386 1.6995 1.5579 1.8410 0.2830 0.939 
2000 476 1.7466 1.7094 1.6096 1.8092 0.1996 0.942 
5000 713 1.5230 1.5069 1.4350 1.5788 0.1437 0.947 

 

Table 2.   IC(95%) for𝛱 Fréchet Pattern’s with𝛾 = 0.65, 𝑟 = 1.2.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 253 2.7777 2.7259 2.5076 2.9443 0.4366 0.923 
2000 437 2.7007 2.4989 2.4987 2.8231 0.3243 0.944 
5000 821 2.5582 2.5310 2.4184 2.6435 0.2250 0.949 

 

Table 3.   IC(95%) for𝛱 Fréchet Pattern’s with𝛾 = 0.75, 𝑟 = 1.1.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 239 3.7723 3.7056 3.3532 4.0579 0.7047 0.920 
2000 368 3.6140 3.5710 3.2974 3.8447 0.5472 0.946 
5000 720 3.4737 3.4455 3.2569 3.6342 0.3772 0.953 
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Table 4.   IC(95%) for𝛱 Fréchet Pattern’s with𝛾 = 0.75, 𝑟 = 1.2.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 227 7.9739 7.8563 7.0898 8.6228 1.5330 0.951 
2000 461 7.9845 7.8732 7.3342 8.4123 1.0708 0.954 
5000 892 7.8107 7.8350 7.3543 8.1157 0.7614 0.956 

 

Table 5.   IC(95%) for𝛱GPD Pattern’s with𝛾 = 0.65, 𝑟 = 1.1.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 138 2.3104 2.1322 1.9010 2.3634 0.4624 0.858 
2000 255 2.2589 2.1025 1.9341 2.2709 0.3368 0.893 
5000 520 2.1471 2.0353 1.9215 2.1490 0.2274 0.902 

 

Table 6.   IC(95%) for𝛱GPD Pattern’s with𝛾 = 0.65, 𝑟 = 1.2.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 129 3.7471 3.4793 3.0891 3.8696 0.7805 0.879 
2000 249 3.7228 3.4846 3.2032 3.7659 0.5636 0.886 
5000 403 3.4005 3.0910 3.0910 3.5099 0.4189 0.904 

 

Table 7.   IC(95%) for𝛱GPD Pattern’s with𝛾 = 0.75, 𝑟 = 1.1.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 146 4.6281 4.3638 3.8329 3.8947 1.0618 0.892 
2000 204 4.3715 4.3255 3.7996 4.6715 0.8718 0.909 
5000 541 4.4127 4.3899 3.9808 4.5179 0.5371 0.927 

 

Table 8.   IC(95%) for𝛱 Fréchet Pattern’s with𝛾 = 0.75, 𝑟 = 1.2.


n 𝑘𝑜𝑝𝑡  𝛱 𝛱  lb ub length Cov pb 

1000 203 10.5025 9.8591 8.5704 10.5478 1.9773 0.875 
2000 347 10.3702 9.9169 8.8580 10.3758 1.5178 0.888 
5000 511 9.9228 9.9579 8.9831 10.2327 1.2495 0.906 

 

In the second part, we compare the finite sample behavior of the proposed reduced bias reinsurance 

premium estimator 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
, with the estimator of Necie et al. (2007), denoted by 𝛱𝑟

 , at the same level of 

retention 𝑅𝑜𝑝𝑡 , and risk aversion r. The results are based on 2000 samples from the Generalized Pareto 

model, with 0.5 < 𝛾 < 1. 
    In Table (9) and Table (10) we present, respectively for r=1 and r=1.2, for sample sizes 1000, 2000, 

5000, 10000 and 20000, the optimal level k, we use the Cheng Peng (2001) optimal sample fraction 𝑘𝑜𝑝𝑡 to 

compute the Π, and we choose the optimal level k, such that 𝑘𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑅𝑀𝑆𝐸 :   to compute our 

estimation Π, the bias of each estimator is given, and the root mean squared error denoted RMSE. For 

almost all sample sizes, our estimator has the smallest RMSE, even if we must go a little further into the 
sample and by choosing an appropriate fraction. Results obtained also show reduced bias of our estimator. 

    The results in Table (11) and Table (12) are identical to those in Table (9) and Table (10), respectively 

with r=1.1 and γ=0.85 for Table (11) and r=1, γ=0.95 for Table (12). 
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Table 9:Results from 2000 simulated Generalized Pareto samples with𝛾 = 0.75,𝑟 = 1.


n 1000 2000 5000 10000 20000 
𝑘𝑜𝑝𝑡  𝛱 𝛾  𝑛  
𝑘𝑜𝑝𝑡  𝛱 𝐻  𝑛  

0.0250 
0.3500 

0.0265 
0.3135 

0.0180 
0.1664 

0.0238 
0.1544 

0.02771 
0.13755 

Bias(𝛱 𝛾 , 𝛱𝑟) 

Bias(𝛱 𝐻 , 𝛱𝑟) 

0.0593 
0.0211 

0.0558 
0.0130 

0.0492 
0.0070 

0.0532 
0.0040 

0.03070 
0.00100 

RMSE(𝛱 𝛾 , 𝛱𝑟) 

RMSE(𝛱 𝐻 , 𝛱𝑟) 

0.2427 
0.3363 

0.2366 
0.2077 

0.1355 
0.1338 

0.1100 
0.0976 

0.07750 
0.06810 

 

Table 10:Results from 2000 simulated Generalized Pareto samples with𝛾 = 0.75, 𝑟 = 1.2.


n 1000 2000 5000 10000 20000 
𝑘𝑜𝑝𝑡  𝛱 𝛾  𝑛  
𝑘𝑜𝑝𝑡  𝛱 𝐻  𝑛  

0.0210 
0.3520 

0.0225 
0.2285 

0.0150 
0.1506 

0.0154 
0.0856 

0.00900 
0.14090 

Bias(𝛱 𝛾 , 𝛱𝑟) 

Bias(𝛱 𝐻 , 𝛱𝑟) 

0.0560 
0.0450 

0.0570 
0.0190 

0.0487 
0.0150 

0.0438 
0.0068 

0.03230 
0.00190 

RMSE(𝛱 𝛾 , 𝛱𝑟) 

RMSE(𝛱 𝐻 , 𝛱𝑟) 

1.4509 
1.1142 

1.1053 
0.9202 

0.8004 
0.7367 

0.6248 
0.4733 

0.5048 
0.3809 

 

Table 11:Results from 2000 simulated Generalized Pareto samples with𝛾 = 0.85, 𝑟 = 1.1.


n 1000 2000 5000 10000 20000 
𝑘𝑜𝑝𝑡  𝛱 𝛾  𝑛  

𝑘𝑜𝑝𝑡  𝛱 𝐻  𝑛  

0.0280 
0.2360 

0.0260 
0.2405 

0.0185 
0.1448 

0.0132 
0.1583 

0.0124 
0.1158 

Bias(𝛱 𝛾 , 𝛱𝑟) 

Bias(𝛱 𝐻 , 𝛱𝑟) 

0.0474 
0.0400 

0.0498 
0.0390 

0.0353 
0.0270 

0.0261 
0.0180 

0.02560 
0.00110 

RMSE(𝛱 𝛾 , 𝛱𝑟) 

RMSE(𝛱 𝐻 , 𝛱𝑟) 

2.3328 
2.0534 

1.7214 
1.3765 

1.2642 
1.1361 

1.0293 
0.7963 

0.75830 
0.6395 

 

Table 12:Results from 2000 simulated Generalized Pareto samples with𝛾 = 0.95, 𝑟 = 1.


n 1000 2000 5000 10000 20000 
𝑘𝑜𝑝𝑡  𝛱 𝛾  𝑛  
𝑘𝑜𝑝𝑡  𝛱 𝐻  𝑛  

0.0270 
0.2520 

0.0210 
0.2550 

0.0164 
0.1570 

0.0147 
0.1382 

0.01050 
0.12180 

Bias(𝛱 𝛾 , 𝛱𝑟) 

Bias(𝛱 𝐻 , 𝛱𝑟) 

0.0301 
0.0130 

0.0302 
0.0179 

0.0252 
0.0120 

0.0180 
0.0037 

0.01350 
0.00130 

RMSE(𝛱 𝛾 , 𝛱𝑟) 

RMSE(𝛱 𝐻 , 𝛱𝑟) 

3.0817 
2.5939 

2.2694 
1.7718 

1.6604 
1.3619 

1.2747 
1.0704 

1.0678 
0.7887 

 
 

5Proofs 
 
Let 

𝛱 𝑟 ,𝑅 𝑜𝑝𝑡
− 𝛱𝑟 ,𝑅 = 𝐴𝑛 + 𝐵𝑛 , 

where 
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𝐴𝑛 =  
𝑘

𝑛
 

1/𝑟

 
𝑟𝐻 

1 − 𝑟𝐻 
  

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝐻 − 1
  1 − ϐ1/2 𝐻 , 𝜌 , 𝛽   

−  
𝑘

𝑛
 

1/𝑟

 
𝑟𝛾

1 − 𝑟𝛾
  

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝛾 − 1
  1 − ϐ1/2 𝛾, 𝜌, 𝛽  , 

and  

𝐵𝑛 =  
𝑘

𝑛
 

1/𝑟

 
𝑟𝛾

1 − 𝑟𝛾
  

𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘

2𝛾 − 1
  1 − ϐ1/2 𝛾, 𝜌, 𝛽  −  𝑆 𝑥 1/𝑟𝑑𝑥

∞

𝑅

. 

    First, we shall show that, 𝐵𝑛 → 0 in probability as 𝑛 → ∞. 
    We define the quantile function for heavy tailed distribution satisfying the first order condition in (3), as: 

𝑄 1 − 𝑠 = 𝐶𝑠−𝛾 , 
 

then, the hazard function is given by: 𝑆 𝑥 = 𝐶1/𝛾𝑥−1/𝛾 . The PH premium of loss is writting as : 

 

𝛱𝑟 ,𝑅 =  𝐶1/𝑟𝛾 𝑥−1/𝑟𝛾 𝑑𝑥 = 𝐶1/𝑟𝛾
∞

𝑅𝑜𝑝𝑡

 
𝑟𝛾

1 − 𝑟𝛾
 𝑅𝑜𝑝𝑡

1−1/𝑟𝛾 , 

As 𝑅𝑜𝑝𝑡 = 𝐶 𝑛 𝑘  𝛾 , we obtain: 

𝑅𝑜𝑝𝑡 =  
𝑘

𝑛
 

−𝛾+1/𝑟

𝐶  
𝑟𝛾

1 − 𝑟𝛾
 , 

as 

𝐶 =  
𝑘

𝑛
 

𝛾

 
𝑋𝑛:𝑛− 𝑘 2  − 𝑋𝑛 :𝑛−𝑘

2𝛾 − 1
  1 − ϐ1/2 𝛾, 𝜌, 𝛽  . 

Then, we conclude that:  

𝐵𝑛 = 𝑜𝑝 1 , 𝑎𝑠 𝑛 → ∞. 

For 𝐴𝑛 , we can write 
 

𝐴𝑛 =  
𝑘

𝑛
 

1

𝑟

 
𝑋𝑛:𝑛− 𝑘 2  − 𝑋𝑛 :𝑛−𝑘

2𝐻 − 1
  1 − ϐ1

2  𝐻 , 𝜌 , 𝛽    
𝑟𝐻 

1 − 𝑟𝐻 
−

𝑟𝛾

1 − 𝑟𝛾
  

                    +  
𝑘

𝑛
 

1

𝑟

 
𝑟𝛾

1 − 𝑟𝛾
  𝑋𝑛 :𝑛− 𝑘 2  − 𝑋𝑛:𝑛−𝑘  1 − ϐ1

2 
 𝛾, 𝜌, 𝛽   

1

2𝐻 − 1
−

1

2𝛾 − 1
  

                                   - 
𝑘

𝑛
 

1

𝑟
 

𝑟𝛾

1−𝑟𝛾
  

𝑋𝑛 :𝑛− 𝑘 2  −𝑋𝑛 :𝑛−𝑘

2𝐻 −1
  ϐ1

2  𝐻 , 𝜌 , 𝛽  − ϐ1
2 
 𝛾, 𝜌, 𝛽   

= 𝐴𝑛 ,1 + 𝐴𝑛 ,2 + 𝐴𝑛 ,3. 

Now, the delta method enables us to write 
1

2𝐻 − 1
−

1

2𝛾 − 1
~𝑃 −

2𝛾 𝑙𝑛2

 2𝐻 − 1 
2
 𝐻 − 𝛾 , 

1

1 − 𝐻 
−

1

1 − 𝛾
~𝑃

1

 𝛾 − 1 2
 𝐻 − 𝛾 , 

and 

ϐ1
2  𝐻 , 𝜌 , 𝛽  

ϐ1
2 
 𝛾, 𝜌, 𝛽 

= 1 +  1 −
𝛾2𝛾  2𝜌 − 1 

 2𝛾 − 1  2𝜌+𝛾 − 1 
 

𝐻 − 𝛾

𝛾
+

𝛽 − 𝛽

𝛽
+  𝜌 − 𝜌 𝑙𝑛 𝑛/𝑘 . 

 

i.e.,  𝑘𝐴 𝑛/𝑘 → 𝝀  𝑎𝑠 𝑛 → ∞, 𝑎𝑠  

𝐻 − 𝛾 = 𝑜𝑝 1 , 𝑎𝑛𝑑 𝛽 − 𝛽 =  𝜌 − 𝜌 𝑙𝑛 𝑛/𝑘 = 𝑜𝑝 1  𝑎𝑠 𝑛 → ∞. 
And 
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ϐ1
2  𝐻 , 𝜌 , 𝛽  = ϐ1

2 
 𝛾, 𝜌, 𝛽  1 + 𝑜𝑝 1  . 

Next, we have 

 𝑘
 𝑘/𝑛 −1/𝑟

𝑋𝑛:𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘
𝐴𝑛 ,1 =  

1

2𝛾 − 1
  

𝑟

 1 − 𝑟𝛾 2
  1 − ϐ1

2 
 𝛾, 𝜌, 𝛽   𝑘 𝐻 − 𝛾 + 𝑜𝑝 1 . 

And 
 

 𝑘
 𝑘/𝑛 −1/𝑟

𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘
𝐴𝑛 ,2 = −

2𝛾 𝑙𝑛2

 2𝛾 − 1 2
 

𝑟𝛾

1 − 𝑟𝛾
  1 − ϐ1

2 
 𝛾, 𝜌, 𝛽   𝑘 𝐻 − 𝛾 + 𝑜𝑝 1 . 

 
And 

 𝑘
 𝑘/𝑛 −1/𝑟

𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘
𝐴𝑛 ,3 = − 

1

2𝛾 − 1
  

𝑟

1 − 𝑟𝛾
  1 −

𝛾2𝛾 2𝜌 − 1 

 2𝛾 − 1  2𝜌+𝛾 − 1 
  𝑘 𝐻 − 𝛾 + 𝑜𝑝 1 . 

 
and, with same assumptions of theorem 1, from Caeiro et al. 2005, we have 

 𝑘 𝐻 − 𝛾 →𝑑 𝑁 0, 𝛾2 , 𝑎𝑠 𝑛 → ∞. 
Finally, we conclude that, 

 𝑘
 𝑘/𝑛 −1/𝑟

𝑋𝑛 :𝑛− 𝑘/2 − 𝑋𝑛 :𝑛−𝑘
 𝛱 𝑟 ,𝑅 𝑜𝑝𝑡

− 𝛱𝑟 ,𝑅 →𝑑 𝑁 0, 𝜎2 𝛾, 𝑟, 𝜌  , 

This completes the proof of Theorem 1. 
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